The performance of microphysical parameterization schemes in hurricane environments

Robert Black

NOAA/AOML Hurricane Research Division

Robert Rogers and Paul Willis

Cooperative Institute for Marine and Atmospheric Studies/U. of Miami

Da-Lin Zhang

U. of Maryland

* Proposal funded by NASA under CAMEX-4 Program

Goals and objectives

- Perform high-resolution simulations of tropical cyclones using sophisticated microphysical parameterization schemes
- Develop techniques for comparing model results with airborne microphysical probe and radar data
- Identify possible biases and sources of uncertainty in the parameterizations
- Implement improvements in schemes to improve simulations of hydrometeor distributions, vertical motions, latent heating patterns, and storm intensity

CFADs of vertical velocity

eyewall

stratiform

Multi-case radar

Floyd simulation

CFADs of reflectivity

Multi-case radar

Floyd simulation

Correlations of hydrometeors and vertical motion for Bonnie

300 hPa

650 hPa

Profiles of simulated eyewall hydrometeor and vertical motion correlations

rainwater

Profiles of simulated eyewall reflectivity and vertical motion correlations

reflectivity

Bonnie

Floyd

Future work

- Perform simulations of additional cases (e.g., Humberto, Lili) to broaden spectrum of storm structures, increase robustness of statistics
- Calculate correlations of vertical motion and reflectivity from vertical incidence radar data of multiple cases, compare with simulation statistics
- Use high-temporal resolution output (e.g., 2-4 minute) to evaluate production/conversion terms in scheme and calculate heat and water budgets for comparisons with budgets calculated from radar and probe data